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Abstract

Simulations of homogeneous decaying turbulence (HDT) in a periodic cube have been used to examine in a detailed and
quantitative manner the behaviour of high-resolution and high-order methods in implicit large eddy simulation. Compu-
tations have been conducted at grid resolutions from 323 to 2563 for seven different high-resolution methods ranging from
second-order to ninth-order spatial accuracy. The growth of the large scales, and dissipation of kinetic energy is captured
well at resolutions greater than 323, or when using numerical methods of higher than third-order accuracy. Velocity incre-
ment probability distribution functions (PDFs) match experimental results very well for MUSCL methods, whereas
WENO methods have lower intermittency. All pressure PDFs are essentially Gaussian, indicating a partial decoupling
of pressure and vorticity fields. The kinetic energy spectra and effective numerical filter show that all schemes are too dis-
sipative at high wave numbers. Evaluating the numerical viscosity as a spectral eddy viscosity shows good qualitative
agreement with theory, however if the effective cut-off wave number is chosen above kmax/2 then dissipation is higher than
the theoretical solution. The fifth and higher-order methods give results approximately equivalent to the lower order meth-
ods at double the grid resolution, making them computationally more efficient.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

As current computational power does not allow direct numerical simulation (DNS) of complex flows, LES
has emerged as a viable alternative where the time dependent behaviour of the flow must be resolved. Con-
ventional LES, where an explicit subgrid model is added to the averaged Navier–Stokes equations, has been
employed successfully in many prototype flows, however it is known to provide excessive dissipation in flows
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where the growth of an initially small perturbation to fully turbulent flow must be resolved [1,2]. It has been
recognised that some numerical schemes gain good results in complex flows without the explicit addition of a
subgrid model [1]. This occurs when the subgrid model is implicitly designed into the limiting method of the
numerical scheme, based on the observation that an upwind numerical scheme can be rewritten as a central
scheme plus a dissipative term (see [3–5] and references therein). Such implicit subgrid models fall into the class
of structural models, as there is no assumed form of the nature of the subgrid flow thus the subgrid model is
entirely determined by the structure of the resolved flow [6].

Using implicit LES (or ILES), excellent results have been gained in simulation of flows as varied as Ray-
leigh–Taylor and Richtmyer–Meshkov instability [7,8], Free jets [9,10], channel flow [10], open cavity flow
[11,3], geophysical flows [12,13], delta wings [14] and decaying turbulence [15–20]. Attempts to formalise
the development of ILES numerical schemes is hindered by the inherent complexity of theoretical analysis
of non-linear schemes, however, recent developments show some good agreements between truncation errors
due to the numerical scheme and the required form of the subgrid terms [21,5].

Several of these flows are of mixed compressible and incompressible nature, where a compressible method is
required to capture certain flow features (e.g. shock waves), yet the turbulent vortices are near-incompressible.
In experimental studies [22] the turbulent Mach number rarely exceeds 0.2. Thus it is of importance to assess
the performance of Godunov-type schemes applied to low Mach number turbulence.

This paper assesses the performance of high-order Godunov-type methods for these applications, via
simulations of low Mach number homogeneous decaying turbulence. The study does not intend to prove that
ILES is a better approach than standard LES, based on explicit subgrid scale models, for the flow in question.
It is intended as a starting point for future development by identifying quantitatively the strengths and
weaknesses of high-resolution methods used in ILES by comparing the ILES results with experimental studies,
DNS and previous conventional LES. It is a complementary extension of the work of Garnier et al. [23],
where the ability of shock-capturing schemes was tested for resolutions up to 1283 and for six extrapolation
methods from second to fifth-order. The authors concluded that the dissipation rate of the ILES methods is
too high, and that the behaviour of the schemes is more akin to a low Reynolds DNS than an LES. In the
present paper, the extrapolation methods employed are less diffusive and range from MUSCL second-order
through to WENO ninth-order accurate. These are finite volume methods which differ in behaviour from
the finite difference and flux limiting methods employed in [23]. Each of these extrapolation methods have been
run on grids from 323 to 2563 to examine the behaviour and convergence (if any) of turbulent statistics and
spectra.

The layout of the paper is as follows. Section 2 details the numerical scheme employed, the form of the
implicit subgrid model, and the method used to initialise a homogeneous, isotropic turbulent field. The effect
of non-zero compressibility in the flow field is discussed. Section 3 compares the quantitative behaviour of the
seven ILES variants in terms of fundamental properties of a turbulent flow field; growth of the integral length
scale; decay rate of turbulent kinetic energy; time variation of enstrophy; skewness and flatness of the velocity
derivative; velocity increment and pressure fluctuation probability distribution functions; kinetic energy spec-
tra; effective numerical filter and spectral numerical viscosity. Section 4 concludes this paper and discusses the
areas for future development.
2. Simulation details

2.1. Governing equations

For all simulations in this paper it is considered that the Kolmogorov scale is significantly smaller that the
mesh size, equivalent to stating that the viscous effects are negligible. Therefore, the Reynolds number Re =1
and the Navier–Stokes equations reduce to the Euler equations. The three-dimensional compressible Euler
equations can be written in conservative variables and Cartesian co-ordinates as
oU

ot
þ oE

ox
þ oF

oy
þ oG

oz
¼ 0; ð1Þ
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where
U ¼ ½q; qu; qv; qw; e�T; ð2Þ
E ¼ ½qu; qu2 þ p; quv; quw; ðeþ pÞu�T; ð3Þ
F ¼ ½qv; quv; qv2 þ p; qvw; ðeþ pÞv�T; ð4Þ
G ¼ ½qw; quw; qvw; qw2 þ p; ðeþ pÞw�T; ð5Þ
e ¼ qiþ 0:5qðu2 þ v2 þ w2Þ; ð6Þ
and q, i, u, v, w are the density, specific internal energy per unit volume and Cartesian velocity components,
respectively. The system of equations is completed with the specification of an equation of state for an ideal
gas
p ¼ qiðc� 1Þ; ð7Þ

where c is the ratio of specific heats.

2.2. Numerical scheme

The computations were carried out using a finite volume Godunov-type method. The flux terms are eval-
uated by a characteristics-based Riemann solver [24]. TVD timestepping is required for the WENO schemes to
retain numericaL stability, thus time advancement is achieved using a third-order TVD Runge–Kutta method
[25]. Simulations using both the TVD time-stepping and third-order extended stability Runge–Kutta [25] with
MUSCL limiters show that the kinetic energy decay exponent and mean velocity derivative moments up to
sixth-order vary by less than 1%. This is expected as the CFL condition ensures that the time step is signifi-
cantly smaller than the spatial step.

Higher-order spatial accuracy is achieved using van Leer’s MUSCL limiting technique [26], or weighted
essentially non-oscillatory (WENO) methods [27]. These numerical methods ensure stability by producing a
vanishing viscosity solution, i.e. the numerics add dissipation which disappears in the limit of mesh size
and time step tending to zero (to remain consistent with the governing equations). The full range of extrap-
olation methods used are

� MUSCL second-order: Minmod (MM), van Leer (VL) and van Albada (VA) ([28,4] and references
therein),
� A new MUSCL third-order method (M3),
� MUSCL fifth-order (M5) [29],
� WENO: fifth and ninth-order (W5 and W9) [27].

For MUSCL extrapolation, the left and right states of the conservative variables at the cell faces are com-
puted as
U L
iþ1=2 ¼U i þ

1

4
ð1� kÞ/ðrLÞðUi � U i�1Þ þ ð1þ kÞ/ 1

rL

� �
ðUiþ1 � U iÞ

� �
; ð8Þ

U R
iþ1=2 ¼U iþ1 �

1

4
ð1� kÞ/ðrRÞðU iþ2 � Uiþ1Þ þ ð1þ kÞ/ 1

rR

� �
ðU iþ1 � U iÞ

� �
; ð9Þ
where U is the vector of cell averaged conserved variables, k is a free parameter which is set to 1/3 for the
third-order limiter, and the cells are labelled by the integer i. It should be noted that the parameter k does
not influence the accuracy of the second-order limiters considered here as they are symmetric (See Appendix
A for the definition of this criteria). Also,
rL
i ¼

U iþ1 � Ui

U i � U i�1

; ð10Þ

rR
i ¼

Uiþ1 � U i

U iþ2 � Uiþ1

: ð11Þ
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In this study the following limiters are considered
/MM ¼ minð1; rÞ; ð12Þ

/VA ¼
rð1þ rÞ
1þ r2

; ð13Þ

/VL ¼
2r

1þ r
; ð14Þ

/M3 ¼ 1� 1þ 2Nr
1þ r2

� �
1� 2r

1þ r2

� �N

; ð15Þ
where VA is van Albada, VL van Leer, MM Minmod and M3 is a third-order limiter [30]. M3 includes a
‘steepening’ parameter N to improve the resolution of discontinuities, in this paper N = 2. All of the above
limiters are constrained in the normal fashion to first-order accuracy at local maxima and minima. The
fifth-order MUSCL scheme (M5) is slightly more complex [29]
/M5;L ¼
�2=rL

i�1 þ 11þ 24rL
i � 3rL

i rL
iþ1

30
; ð16Þ

/M5;R ¼
�2=rR

iþ2 þ 11þ 24rR
iþ1 � 3rR

iþ1rR
i

30
; ð17Þ
where monotonicity is maintained by limiting the above extrapolations using
/M5;L ¼ maxð0;minð2; 2rL
i ;/M5;LÞÞ; ð18Þ

/M5;R ¼ maxð0;minð2; 2rR
i ;/M5;RÞÞ: ð19Þ
WENO [27,31–33] is an extension of the original ENO concept first proposed by Harten et al. [34]. It is an
arguably simpler, more efficient, robust and accurate approach. For a given order of accuracy the requisite
polynomial is interpolated over each support stencil that includes the interface in question. The smoothness
of these candidate polynomials is then assessed in such a way that a weighted convex combination of all
the resulting interface values can be obtained with minimal spurious oscillations. In effect, stencils that cross
a discontinuity will be assigned a near zero weight in comparison with those that do not. By including all the
stencils, the order of accuracy of the reconstruction in smooth regions of the flow increases to 2r � 1 for poly-
nomial reconstructions of rth order accuracy.

By way of example the third-order WENO reconstruction is presented, which derives from linear interpo-
lation (r = 2). For the left-hand interface value Uiþ1

2;L
there are two stencils, ðxi�1; xiÞ and ðxi; xiþ1Þ. For each

stencil, the interpolation polynomial is given by
P�ðxÞ ¼ U i þ
Ui � U i�1

Dx
ðx� xiÞ; ð20Þ

PþðxÞ ¼ U i þ
Uiþ1 � Ui

Dx
ðx� xiÞ: ð21Þ
The convex combination is then given by
Uiþ1
2
¼ a0

a0 þ a1

P�ðxiþ1=2Þ þ
a1

a0 þ a1

Pþðxiþ1=2Þ; ð22Þ

a0 ¼
C0

ð�þ ðISÞ�Þ2
; a1 ¼

C1

ð�þ ðISÞþÞ2
; ð23Þ
where the coefficients Ck are determined for optimal weighting and the smoothness indicators (IS) are given by
(IS)� = (Ui � Ui�1)2 and (IS)+ = (Ui+1 � Ui)

2. Finally, � is a small number used to prevent divisions by zero in
a perfectly smooth flow. The equations for fifth and ninth-order methods are naturally more complex but the
principle is the same [27].

Regarding the CPU time taken to complete the very high order accuracy simulations, the ratio of CPU
times to that required to carry out the second-order van Leer simulations is 1.2 for M5 and W5, and 2.5
for W9. This does not include communication times for parallel computations as these depend on the hard-
ware used and the number of parallel blocks utilised. This was not significant for the number of processors
employed (maximum of 96 AMD Athlon processors used for the 2563 simulations).
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2.3. Implicit subgrid models

ILES is a so-called ‘no model’ turbulence model. It is assumed that the numerics provide sufficient model-
ling of the subgrid terms to allow the ‘correct’ dissipation of turbulent kinetic energy. As pointed out in the
introduction, the subgrid model embedded in the numerical method used to discretise the convective terms is
determined entirely by the structure of the flow. This has obvious benefits in the simulation of transitional
flows where excess dissipation can damp the growth of critical modes. A detailed description of the implicit
subgrid model would be too lengthy to include within this paper (see, for example [4,21,9,35,5]), however
an outline of the components of the ILES model will be given in this section.

The finite volume fluxes for the Godunov method can be written in the following format [28]:
Fiþ1=2 ¼
1

2
ðFL þ FRÞ �

1

2
jAjðUR �ULÞ; ð24Þ
where
jAj ¼ KjKjK�1; ð25Þ

is the flux Jacobian, K is a diagonal array of eigenvalues, F is the vector of fluxes and the subscripts R and L
indicate the right and left side of the interface, respectively. Using this expression it can be seen that the influ-
ence of the extrapolation method on the kinetic energy dissipation rate can be understood as the combination
of two effects.

The first term on the right-hand side of (24) is directly computed from the extrapolated quantities thus it is
an approximation of the flux to a certain order of accuracy. In finite volume methods the filtered quantity is
inverted to recover the continuous function to estimate the extrapolated cell interface values. The numerical
grid is assumed to be equivalent to a top hat filter in physical space, i.e.
U ¼ 1

DV

Z Dv

0

UDV ; ð26Þ
where U indicates the cell averaged quantity, and DV = DxDyDz. The inversion is usually done using a Taylor
series expansion of the top hat filter, and shows that the leading order difference between the cell averaged
quantity and continuous function measured at the cell centre are at second-order, i.e. in one dimension (for
more details see [6,21,36])
U ¼ U � Dx2

24
U xx þODx4; ð27Þ
where (.)x indicates a derivative with respect to x. In the construction of schemes with accuracy higher than
second-order, this conversion has to be taken into account in the design of the scheme. This implies that high-
er-order schemes inherently include some leading order influences of the subgrid variations for the resolved
modes (either turbulent or laminar variations). For example, at third-order accuracy the leading order kinetic
energy dissipation term can be determined from modified equation analysis (MEA) following the methodol-
ogy in [37,21]. The first step in this process is to write the extrapolated quantities as a function of the cell aver-
aged quantity, expanding the interface value in a Taylor series as is done when deriving truncation terms for
the linear advection equation. Next, subtract the exact Euler equations and gather together the leading order
terms in powers of Dx, Dy and Dz. These remaining terms form the truncation error. As an example, taking
third-order accurate extrapolated quantities, the leading order terms can be written as the divergence of a ten-
sor s. In two dimensions
sxx ¼ �Dx2

12
u2

x �
Dy2

12
u2

y ; ð28Þ

sxy ¼ syx ¼ �Dx2

12
uxvx �

Dy2

12
uyvy ; ð29Þ

syy ¼ �Dx2

12
v2

x �
Dy2

12
v2

y : ð30Þ
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An equivalent results is also achieved through Approximate Deconvolution, as detailed in [36,6]. The dissipa-
tion of kinetic energy due to this stress tensor is
dED

dt
¼ �

Z
D
ðuxs

xx þ uys
xy þ vxs

yx þ vys
yyÞDX DY ; ð31Þ
where ED now indicates the kinetic energy in a domain of size DXDY without external forces. This gives
dKE
dt
¼ Dx2

12
u3

x

� �
þ huxuyvxi

� 	
þ Dy2

12
v3

y

D E
þ huyvxvyi

h i
: ð32Þ
The leading order terms are proportional to the skewness of the velocity derivative, which is negative in tur-
bulent flows thus providing dissipation of resolved kinetic energy. Naturally, higher-order extrapolation meth-
ods will approximate the subgrid variations to a higher order of accuracy for modes which can be resolved on
a given grid.

The extrapolation method also influences the second term in (24) through the difference of the left and right
extrapolated quantities. Ideally this should remove the kinetic energy from the system in a form similar to the
action of subgrid vortices on the resolved vortices. Kolmogorov proposed the following similarity hypothesis
[38,39]
r��r ¼
5

4
Du3 ð33Þ
where ��r is the dissipation rate averaged over the distance r, and Du is the velocity increment. This represents
the dissipation due to homogeneous isotropic turbulence per unit time per unit area. It has been shown to be
valid for Taylor–Reynolds numbers greater than 1000 and when the length scale r lies within the inertial range
[40].

The only time that kinetic energy is irreversibly changed into heat in the solution of a Riemann problem is
between a shock wave and contact surface. All other flow features are isentropic. As determined in [41,42] the
entropy change DS due to the passage of a shock wave can be written as
DS ¼ �o
2p

oV 2






S

DV 3

12T
; ð34Þ
where V is the specific volume, p is the pressure, and T is the temperature. Using the Hugoniot relations and
under the assumption of a perfect gas this can be written as
TDS ¼ �ðcþ 1Þ
12a

Du3
s ð35Þ
where c is the ratio of specific heats, a is the sound speed, and Dus is the velocity jump over the shock wave.
This gives a measure of the irreversible dissipation of kinetic energy in the Riemann solution, an increase of
specific internal energy at the cost of specific kinetic energy. Thus at an interface where the solution of a Rie-
mann problem lies between the contact surface and shock wave there will be an effective dissipation of kinetic
energy proportional to Du3

s – analogous to (33). The choice of extrapolation method directly influences the
magnitude of the velocity jump, thus modifying the dissipative properties of the numerical scheme.

An important implication of this is that the differences between the extrapolated quantities (i.e. UR � UL)
are as important as the formal order of accuracy of the extrapolation in characterising the dissipative prop-
erties of the scheme. For example, MM, VA, and VL are all second-order schemes and so should give similar
results. However, the difference between the right and left extrapolated values at leading order is second-order
for MM, but third-order for VA and VL. This explains the dissipative behaviour of the MM limiter as com-
pared to the VA and VL limiting methods.

An additional component to consider is the behaviour of the extrapolation methods as regards monotonic-
ity. MUSCL schemes are strictly monotonic, however WENO methods are not. Oscillations in one dimension
are manifested as vortex breakdown in two and three dimensions. This dispersive behaviour of the very high-
order methods can inject energy at the small scales, altering the kinetic energy spectrum.
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Given a perfect subgrid model, an LES at several different resolutions should be identical given that the
cutoff wave number lies within the inertial range. However, it is expected that the model is not perfect, thus
increasing the resolution should have the effect of reducing the effects of the numerical method on a given
mode, shifting it to higher wave numbers. Thus any errors induced via the subgrid model should decrease with
increased resolution and order of the schemes.

The numerical methods employed here satisfy the second law of thermodynamics on a global level. It is
possible that there are local decreases, however it is very difficult to quantify as it is not easy to separate local
generation of entropy from the flux of entropy from neighbouring cells. An analysis of entropy generation in
compressible finite volume schemes shows that at leading order local entropy generation is always positive, as
long as the CFL limit is respected [43].

2.4. Initialisation

The flow field was initialised using a method derived by Youngs and utilised in previous simulations of
decaying turbulence [8,7]. The flow field has an initial kinetic energy spectrum given by the analytical solution
in the case of dominating viscous effects [22]:
EðkÞ ¼ u02
k4

k4
p

ffiffiffiffiffiffiffi
8

k2
pp

s
expð�2ðk=kpÞ2Þ; ð36Þ
where k is the wave number, and the peak in the energy spectrum is defined by changing the peak kp in the
exponential. Unless otherwise stated the peak of the energy spectrum was chosen at kp = 4 to aid comparison
with previous results from Youngs [8,7]. To ensure the generation of an almost non-divergent (i.e. incompress-
ible) velocity field, the velocity is formed from components of a vector potential A, which satisfies the follow-
ing relationship:
u ¼ r� A: ð37Þ

As the divergence of a curl is identically equal to zero this gives a non-divergent velocity field. The vector po-
tential is initialised with a Gaussian distribution of amplitudes and random phases which is rescaled linearly to
give a velocity field satisfying
KE ¼ 3

2
u2 ¼ 0:5; ð38Þ

M ¼ u0

c
¼ 0:1; ð39Þ
where u is the mean turbulent velocity. However, although this gives zero compressibility in the initial condi-
tion, the rate of change of compressibility is not necessarily zero, as has been reported by several authors
[44,45,17,46,47]. The effectiveness of this method was investigated by decomposing the compressible and
incompressible velocity fields in Fourier space using the Helmholtz decomposition. This splits an arbitrary
vector into solenoidal (i.e. incompressible) and dilational (compressible) components [44,45,17,46,47]. The
velocity in Fourier space can be written as a sum of the solenoidal and dilational velocity components:
uðkÞ ¼ usðkÞ þ udðkÞ; ð40Þ

where
r � usðkÞ ¼ 0; ð41Þ

thus the solenoidal and dilational components can be calculated given the three-dimensional Fourier trans-
form of the velocity field
usðkÞ ¼ uðkÞ � k � uðkÞ
jkj2

k; ð42Þ

udðkÞ ¼ uðkÞ � usðkÞ: ð43Þ
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Fig. 1 shows the total resolved kinetic energy in the compressible and incompressible modes, respectively, for a
323 VL simulation. The energy in the compressible modes is about three orders of magnitude less than the
energy in the incompressible modes and decreases as the simulation continues. It was found that even for
Mach = 0.5 the compressible component at initialisation is less than 1%. Comparisons with previous results
[44,45,17,46,47] show that the initial conditions are effectively reducing the influence of compressibility effects.
A key observation of the evolution of the kinetic energy in the compressible component is that it is highly
oscillatory. Kovasnay [48] showed that in the absence of viscosity and at low Mach number the vorticity, pres-
sure and entropy are decoupled at first-order; viscosity acts to couple the pressure and entropy, but the vor-
ticity remains decoupled. This was demonstrated via a perturbation analysis of the governing equations which
show that to leading order the pressure perturbations are dominated by acoustic modes which are not related
to vorticity. This partial decoupling leads to the oscillations in compressible kinetic energy at late times. The
spectra shown in Fig. 2 illustrate that the energy in the compressible modes is largely restricted to the lower
wave numbers. The undesirable aspect of this is that on the short time scales the rate of change of energy at
low wave numbers is oscillatory and is due to the compressible modes. Due to this, the kinetic energy dissi-
pation rate at a given point in time must be computed as an average of the rate of change centred on the time
point of interest.
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Fig. 1. The amount of kinetic energy contained in the incompressible and compressible modes in a 323 simulation using VL extrapolation.
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Fig. 2. The compressible and incompressible kinetic energy spectra for a 2563 using VL extrapolation.
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It should be noted that although a quasi-incompressible turbulent flow field is initialised, turbulence of
mean Mach 0.1 would not be seen in an incompressible flow, indeed, it is likely that the mean flow would
be highly compressible. Hinze [22] states that even at mean flow Mach number of up to 5 in strong shear layers
a turbulent Mach number greater than 0.2 has never been observed.

Fig. 3 shows isosurfaces of equal vorticity magnitude taken at t = 0 and t = 1 for the 1283 case with M5
extrapolation. This shows the initial flow field composed of low wave number modes, and the fine scale worm
like vortical structures present in the fully developed turbulent flow field. The form of the structures present in
the flow field does not change at later times. Fig. 4 shows the development of the skewness at each of the mesh
resolutions for M5 demonstrating that a steady state is achieved after a relatively short period of time allowing
for good statistical averages, especially at the higher resolutions. The simulations were run to a non-dimen-
sional time of t = 5 for all mesh resolutions, corresponding to approximately 8 eddy turnover times.
Fig. 3. Iso-vorticity surfaces at
ffiffiffiffiffiffi
x2
p

¼ 5 illustrating the initial condition and fully developed homogeneous turbulence in a 1283 using M5
extrapolation.
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Fig. 4. Velocity derivative skewness as a function of time at several resolutions using M5 extrapolation.
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3. Results and discussion

3.1. Turbulent isotropy

It is important to quantify turbulent isotropy, as turbulent theory relies on this assumption to derive ana-
lytical expressions for kinetic energy decay rates and growth of the length scales. The integral length was cal-
culated from the longitudinal and transverse energy spectra using [49,50]
L1 ¼
p

u2
rms

E11ðk ¼ 0Þ; ð44Þ

L1 ¼
2p

u2
rms

E22ðk ¼ 0Þ; ð45Þ
where
E11ðk1Þ ¼
1

p
hu2

1i
Z 1

0

dx1f ðx1Þ cos k1x1; ð46Þ

E22ðk1Þ ¼
1

p
hu2

1i
Z 1

0

dx1gðx1Þ cos k1x1; ð47Þ
and f and g are the second-order longitudinal and lateral correlation functions relative to the 1-direction.
These are then averaged in all three directions. Both definitions of the integral length agree to within ten per-
cent throughout the period of the simulations, however, it is observed that the simulations become increas-
ingly more anisotropic at late times. There is a considerable anisotropy evident in the mean velocities for
the 323, as it is extremely under-resolved. At this resolution there are only 8 cells per wavelength even at
the peak of the energy spectrum. Above 323 the maximum mean square turbulent velocities in each direction
match the mean turbulent velocity to within 6% throughout the simulation.

3.2. Kinetic energy decay rate and growth of the length scales

It is widely accepted that the evolution of kinetic energy in homogeneous isotropic turbulence can be writ-
ten as follows [22]:
3=2u2 ¼ Aðt � t0Þ�p
; ð48Þ
where u is the root mean square turbulent velocity, A is a constant, t0 is the virtual origin in time, and p is a
positive constant. If the exponent is not in a physically realistic range then the simulations will rapidly decor-
relate with reality. In addition to this, the growth of the energy containing scales, i.e. the integral length scale,
must be represented accurately, as these eddies typically represent the dominating structures in the flow. The
growth of the integral length scale is
L1 ¼ Bðt � t0Þq; ð49Þ

and q is a positive constant [51]. To facilitate comparison with conventional LES studies, the virtual origin in
time t0 = 0 when computing the mean kinetic energy decay exponent and growth of the integral length scales.

Fig. 5 shows the total resolved kinetic energy using the MUSCL fifth-order extrapolation method. Only
resolutions of above 323 are shown for clarity. There is very little decay in kinetic energy in the first instant
as the energy is being transferred from the low to high wave numbers. Once the high wave numbers are pop-
ulated, the numerical dissipation increases until an approximately constant power law decay is seen.

Wind tunnel experiments using grid generated turbulence have measured kinetic energy decay rates
p � 1.2–1.3 [52–56]. Theoretical analysis does not give a clear solution, however, it is expected that the decay
should lie between p � 1.2 [57,51] and p � 1.4 [58–60]. Recent DNS at Rek < 250 by Ishida et al. [61] with an
initial spectrum proportional to k4 gave p = 10/7. The mean decay exponent p from t = 1 to 5 for each extra-
polation method is detailed in Table 1.

At 323 all second and third-order methods exhibit a decay rate which is significantly less than physically
expected. As will be discussed in the following section, the velocity derivative moments for these schemes



Fig. 5. Resolved kinetic energy in simulations using the MUSCL fifth-order limiter at dTable 1
Mean kinetic energy decay exponent

p

Resolution MM VA VL M3

3230.96 1.19 1.33 1.17 1.32
6431.32 1.45 1.39 1.36 1.58 1.44 1.4

12831.27 1.52 1.49 1.47 1.41 1.44 1.28
25631.28 1.43 1.36 1.32 1.25 1.30 1.16
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at this resolution returns rapidly to Gaussian, thus no turbulent field exists. Excessive numerical dissipation
acts on the resolved modes, as even at the peak of the kinetic energy spectrum there are only 8 cells per wave-
length. It should be noted that the decay rate alone cannot characterise a numerical method as the decay rate
depends on the resolved features. For example, a method may have a low mean decay rate simply because all
short wave perturbations have been dissipated from the system at an early time – this is the case with the Min-
mod limiter at 323.

The decay exponent for the Minmod limiter at 643 is in excellent agreement with the quoted value of p = 1.3
for 643 in Garnier et al. [23], thus confirming the consistency of the comparison. However, the other schemes
exhibit a less diffusive behaviour. At higher resolutions, and at higher orders of accuracy, the decay exponent
lies between 1.16 and 1.58 for all methods employed, whereas [23] report p > 2. The results here are in good
agreement with the previous study by Youngs [8] which reported p = 1.41 using a Lagrangian based ILES
code with the same initialisation method.

Compared to the experimentally determined decay exponents these results are higher, however, there is
uncertainty in the choice of the virtual origin t0 in both simulation and experiment. The ILES methods com-
pare favourably with conventional LES, where the decay exponent p = 1.17–2 [62–69].

In comparing the limiters, the two fifth-order methods and W9 give the most physically realistic kinetic
energy decay rates at low resolution. At all other resolutions the decay rate remains within a physically real-
istic range for all limiters, given the uncertainties in determining t0.

Two additional simulations of 2563 resolution were carried out with the Minmod limiter, where the peak of
the initial energy spectrum were chosen kp = 1 and 12, respectively. The two simulations differ quite signifi-
cantly in flow structure and behaviour. The lower the initial peak of the spectrum, the longer the period of
redistribution of energy before a power-law decay of kinetic energy begins. The average decay exponent p

is 2.12 for kp = 1 and 1.29 for kp = 12. The theoretical decay rate of constrained turbulence (i.e. when the
energy containing scales are close to the size of the box) is p = 2, which is in good agreement with the decay
rate for the case where kp = 1. This behaviour is nearly identical to that seen in the symmetry breaking
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turbulent decay of the Taylor–Green vortex, where initially large coherent structures develop instabilities and
break down [15,70].

Given an initial spectrum of k4 at low wave numbers it is expected that the integral length should grow
proportional to t2/7 [22,51], potentially moving to t2/5 if the low wave numbers take on a k2 form at late time.
Fig. 6 shows the normalised integral length scale t�2/7 L1 for all grid resolutions for three extrapolation meth-
ods. These plots are representative of the behaviour of all of the extrapolation methods employed in this study.
The lines do not lie on top of each other as each numerical scheme has a different time origin for the decay of
kinetic energy and the growth of the integral length scale. It can be seen that the integral length grows pro-
portional to t2/7 as expected, and that this relationship becomes more accurate as the resolution and order
of the method increases.

3.3. Structure functions and enstrophy

The velocity structure functions are typically used to quantify if the flow is turbulent, and its characteristics.
These are computed as [2]
Sn ¼ ð�1Þn hðou=oxÞni
hðou=oxÞ2in=2

; ð50Þ
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where n is a positive integer, and the derivatives are computed using second-order accurate centred differences
and then averaged over all three directions. The third-order velocity structure function (n = 3), or skewness, is
directly related to enstrophy in isotropic homogenous turbulence, and the fourth-order structure function
(n = 4), or flatness, gives a measure of the probability of occurrence of extreme or mild events. Typically,
the lower the absolute value, the higher the numerical dissipation.

The flatness increases consistently with Reynolds number, at a rate approximately S4 � 3 + 1/2Re0.25. The
most recent experimental results measured S3 = 0.34, and S4 = 3.75 for Rek = 720 [56], both lower than pre-
vious experiments. Computational results from previous DNS and LES simulations are summarised in Tables
2 and 3.

Table 4 details the average skewness functions in the present study, listed in approximate order of decreas-
ing dissipative behaviour of the numerical scheme. It is expected that increasing the resolution should increase
the skewness until it reaches the state expected for fully developed homogeneous decaying turbulence. Sreen-
ivasan and Antonia [71] have compiled many experimental velocity structure function measurements. The
skewness appears constant at approximately 0.5 between Reynolds 10 and 1000, but increases above this
threshold. In the current study, as the mesh resolution increases, the skewness increases converging towards
a value of around 0.37. This is in good agreement with the most recent experimental results of 0.34 for
Rek = 720 [56] and previous ILES results [23], but lower than DNS results. The close agreement with the
results of Kang et al. [56] is interesting as the integral length scale in the experiments is approximately 1/4
the size of the wind tunnel – and in the current simulations it is approximately 1/4 of the box size.

At the lowest resolution the skewness factor for all second and third-order limiting methods is much lower
than the experimental values and tends rapidly back to a Gaussian distribution. The numerical dissipation of
the scheme does not allow an adequate number of undamped modes to represent a turbulent flow field. How-
ever, at fifth-order and higher the numerical schemes capture the non-Gaussian behaviour well. As the major-
ity of simulations around complex geometries are not well resolved this is an important point to note. As is
generally accepted, Minmod is very dissipative, and not a good extrapolation method to use for turbulent
flow. This is illustrated in the skewness values, which remain much lower than expected until resolutions of
1283. At 643 the van Albada, van Leer and MUSCL third-order have physically realistic skewness values, close
to experimental results. Surprisingly, the skewness decreases when using W9 methods, indicating that the M5
and W5 perform best at all resolutions.

The mean flatness is detailed in Table 5. Comparing the results to experimental results reported in [71] the
flatness should increase consistently with Reynolds number, at a rate approximately S4 � 3 + 1/2Re0.25. This
implies that the ILES simulations are achieving average Taylor–Reynolds numbers of approximately one hun-
dred over the course of the simulation, during which the mean turbulent velocities decrease by one-fifth. How-
ever, the experiments of Kang et al. measured lower flatness of 3.75 at Rek = 720, which would give the
simulations a much higher effective Rek within the simulations. The flatness does not change significantly with
increasing resolution, or increasing order of the numerical scheme. M3 has the highest mean value at low res-
olution, however at higher resolutions there is little difference between the schemes. This indicates that the
probability of extreme events is not increasing with increasing resolution, contradictory to expected behaviour.
Table 2
Velocity structure functions computed from DNS

Quantity [83] [84] [85] [73] [62] [86] [87] [64] [46] [74]

Rek 45 83 64 150 <51 202 168 195 175 460
S3 0.47 0.51 0.4 0.5 0.58 0.44 0.52 0.54 0.45 0.55
S4 – – 4.05 5.9 4.31 – 6.1 6.7 – 7.91

Table 3
Velocity structure functions computed from LES

Quantity [63] [16] [65] [66] [56] Gaussian

Rek 1 248 <71 1 720 –
S3 0.4 – 0.4 0.22 0.42 0.00
S4 2.73 3.6 – – – 3.00



Table 5
Fourth-order velocity structure functions

Resolution MM VA VL M3 M5 W5 W9

323 4.09 3.78 3.62 5.17 4.17 3.58 3.33
643 4.07 4.25 3.94 5.49 4.37 3.95 3.47
1283 4.34 4.38 4.09 5.80 4.55 4.32 3.55
2563 4.56 4.61 4.27 4.74 4.96 4.81 3.98

Table 4
Third-order velocity structure functions

Resolution MM VA VL M3 M5 W5 W9

323 0.08 0.11 0.19 0.14 0.31 0.30 0.26
643 0.22 0.32 0.30 0.31 0.31 0.33 0.31
1283 0.31 0.35 0.33 0.34 0.36 0.36 0.32
2563 0.34 0.37 0.36 0.36 0.38 0.40 0.35
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Fig. 7a) shows the time variation of the enstrophy (Æx2æ, where x is the vorticity) for each mesh resolution
for the van Leer limiter. Fig. 7b) shows the variation with method at a 643 resolution. Above 1283 resolution
for the second and third-order methods, and 643 for the higher-order methods there are two clear stages as
reported in previous studies [58,72]. In the first stage the entrophy increases due to vortex stretching which
transfers energy to the smaller, faster moving vortices. Once the energy spectrum is fully developed, the ens-
trophy reduces with time as numerical dissipation decreases the resolved kinetic energy. In comparing the dif-
ferent methods, the higher the order of the method, the higher the enstrophy peak, reflecting the decreasing
dissipation. W9 is the least dissipative via this measure, followed by W5 and M5. W9 is equivalent to van Leer
at double the mesh resolution, whereas W5 and M5 are slightly less than double. At late times M5 has higher
enstrophy than W5, indicating that setting local minima and maxima to first-order accuracy does not signif-
icantly influence the accuracy of the scheme.

3.4. Probability distribution functions

The velocity increment probability distribution functions (PDFs) have been computed for each grid reso-
lution and method, where the velocity increment is defined as dui = ui(x + Dx) � u(x). Figs. 8 and 9 show the
PDFs normalised by durms plotted with experimental results by Kang et al. [56] taken at Rek = 626, and DNS
by Vincent and Meneguzzi [73] (Rek � 150) and Gotoh et al. [74] (Rek � 381). Note that the van Albada, Min-
i m e Enst 2 3 4 5 1 0 01 0 11 0 21 0M M V L5 W 5 W 9enstrophy with time; (a) Van Leer limiter at 323!(b) with extrapolation method.
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Fig. 8. Velocity increment PDFs compared to experimental results by Kang et al. [56], and DNS by Vincent and Meneguzzi [73] and
Gotoh et al. [74] at t = 2.
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mod and van Leer give very similar results hence the first two are not shown. All methods capture the non-
Gaussian behaviour of the velocity increments, the fifth-order MUSCL limiter giving best agreement with the
experimental results. Indeed, at 2563 resolution the M3 and M5 limiters lie almost directly on top of the exper-
imental results for negative increments, and follow the positive increments up to du/durms = 5. Surprisingly,
the ninth-order WENO has the least activity in the wings compared to the other very high-order schemes.
The van Leer, Minmod and van Albada limiters give exponential wings, but less intermittent than both exper-
imental and DNS results.

The results shown here demonstrate that the shock capturing schemes give velocity increment PDFs in very
good agreement with experimental results at Rek � 626. This appears contradictory to the results in Garnier
et al. who show that the velocity increment PDFs are close to DNS results at Rek � 20. Comparing DNS of
Vincent and Meneguzzi [73] and Gotoh et al. [74], and the experimental results of Kang et al. [56] it is clear
that there is a large discrepancy in the behaviour of the PDFs. The DNS results have a PDF which differs by
more than an order of magnitude at the exponential wings from the experimental results, and appears to be
increasing with Rek. Thus, from comparison with DNS results, a low numerical Reynolds number of �20
appears reasonable, however comparison with experiment gives the numerical Reynolds number significantly
higher at approximately 626.
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The pressure PDFs are shown in Fig. 10 for the VL, M5 and W9 schemes at 2563, where they follow a
Gaussian distribution, demonstrating that the pressure is decorrelated from the vorticity. This Gaussian dis-
tribution of pressure is found for all schemes at all resolutions. The source of this decorrelation is believed to
be the decoupling of pressure and vorticity as described in Section 2.4.

3.5. Spectra

The three-dimensional energy spectrum E(k) is defined as [49]
EðkÞ ¼ 2pk2/iiðkÞ; ð51Þ

where k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y þ k2

z

q
and the spectrum tensor / is
/ijðkÞ ¼
1

ð2pÞ3
Z 1

�1
QijðrÞexp�ikrdr; ð52Þ
where Qij is the second-order velocity correlation tensor. The three-dimensional resolved kinetic energy spec-
trum for all resolutions and methods at t = 5 are shown in Fig. 11 for the second and third-order methods, and
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in Fig. 12 for the fifth and ninth-order methods. Ideally, the high wave number part of the spectrum should
form a straight line in log-log axis with a power law of k�5/3 as predicted by Kolmogorov [38]. At 323 all lim-
iters except W9 are too dissipative at high wave numbers, leading to lower kinetic energy than ideal. The W9
simulation has a reasonable inertial range to the cutoff. Given that the degrees of freedom within the system
are low, this is an excellent result. However, increasing the resolution to 643 does not give a corresponding
increase in the k�5/3 range, although at this resolution there also is a short inertial range in simulations using
the fifth-order methods. Interestingly, the M5 method is less dissipative than W5 at high wave numbers, lead-
ing to a slightly ‘fuller’ spectrum.

The trend towards increasing size of the range with approximate Kolmogorov scaling continues for 1283

and 2563 for the higher-order schemes, with very little or no inertial range for the second and third-order lim-
iters until the highest resolution. Table 6 details the ratio of the wave number at which the energy spectrum
deviates more than 10% from an assumed k�5/3 to the maximum wave number kmax for the given grid. At the
grid resolutions considered, this appears to be reaching a value independent of grid resolution, indicating that
the simulations are of a large eddy nature, and not following a constant dissipation Kolmogorov range scal-
ing, where k/kmax would decrease with increasing effective Reynolds number [22].

In comparing the schemes, Minmod shows effectively no inertial range, and the data in Table 6 are repre-
sentative of this. It gives consistently worse resolution of high wave number modes when compared to the
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Fig. 12. Three-dimensional kinetic energy spectrum E3D at t = 5 for the fifth and ninth-order methods at different resolutions.



Table 6
Highest normalised wave number (k/kmax) at which the resolved kinetic energy spectrum deviates more than 10% from an assumed k�5/3

law

Resolution MM VA VL M3 M5 W5 W9

323 0.19 0.19 0.19 0.19 0.25 0.31 1.0
643 0.09 0.13 0.16 0.13 0.22 0.25 0.34
1283 0.05 0.10 0.13 0.11 0.19 0.19 0.31
2563 0.05 0.10 0.10 0.10 0.16 0.16 0.31
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other second-order limiters. As stated in Section 2.3 the leading order difference between the limited quantities
for MM is second-order, however for VA, VL and M3 the difference is third-order. As the dissipation in a
Godunov scheme is proportional to the difference of extrapolated quantities, the lower the leading order of
the difference, the higher the dissipation. Examining the spectra in Fig. 11 it is clear that the MM limiter is
more dissipative, and that the formally second-order accurate VL and VA methods have behaviour closer
to that of the third-order accurate M3. These resolve a short inertial range up to kmax/10.

Significant improvements are seen at fifth-order where the dissipative ranges begin at kmax/6 and at ninth-
order at kmax/3. From this it can be seen that using fifth and higher-order methods are comparable to increas-
ing the resolution by a factor of two in each direction when compared to the second and third-order limiters,
thus easily justifying the increase in computational time. As turbulent velocities scale as k�1/3 then if it is
assumed that a k�5/3 range exists to the cutoff then even at the maximum grid resolution the smallest eddies
still have a mean turbulent velocity one fifth of that at the peak. This is an extremely noisy signal and very
difficult to capture accurately using any numerical method in physical space. Results gained here for the
higher-order schemes indicate that the simulations capture modes of wavelength of 10 cells with reasonable
statistical accuracy, which is considered to be a good result.

The Kolmogorov constant has been computed and it is found that Ck � 1.9 for the three-dimensional spec-
trum. This is in good agreement with the ‘bump’ at the beginning of the sub-inertial range where Ck � 2, as
reported in recent DNS [75,74], and experimental results [76,56,77,54,78], but higher than the theoretical value
of Ck � 1.6 expected. It should be noted that these are single time spectra from decaying turbulence not aver-
aged from statistically stationary forced turbulence.

A further measurement of the presence of a sub-inertial range is by computing Kolmogorov’s four-fifth’s
law. As the problem is not stationary (i.e. it is decaying) the results were calculated from the Karman–
Howarth equation for an inviscid fluid, hence including a contribution from the time variation of the sec-
ond-order structure function [2],
� 3

r4

Z r

0

s4 o

ot
DLLðs; tÞdsþ DLLLðr; tÞ

� �
�r ¼ 4

5
¼ B

�
; ð53Þ
where DLL ¼ ½uðx1 þ e1
4
5
¼ r; tÞ � uðx1; tÞ�2, DLLL ¼ ½uðx1 þ e1r; tÞ � uðx1; tÞ�3 and s is a dummy integration var-

iable. In forced turbulence this relationship holds at Rek > 1170 [40], and Antonia and Burattini [79] suggest
that for decaying isotropic turbulence the asymptotic value of four-fifths is not reached until Rek > 106.

B is plotted in Fig. 13 at a grid resolution of 2563 results for the van Leer, M3, M5, and WENO methods.
The four-fifths law is not satisfied for any of the methods. Comparing the results with experiment suggest
Rek < 100.

The short extent of the sub-inertial range (if present at all) indicates that the ILES approach using standard
compressible finite volume methods would not be appropriate for accurate resolution of flow where the fea-
tures of interest are less than several mesh cells in size.

3.6. Spectral distribution of numerical viscosity

From the previous subsections it appears that the M3, M5 and W9 limiters are the optimum choices com-
pared to schemes of similar order of accuracy. To further quantify the performance of these schemes the spec-
tral behaviour of the numerical viscosity is examined. Garnier et al. [23] computed the amplification factor for
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upwind fluxes, showing that a unique filter length cannot be defined for the Euler equations. This will be exam-
ined here. Secondly, the numerical viscosity is computed in the form of a numerical spectral eddy viscosity as
proposed by Domaradzki et al. [80]. This is compared to the theoretical ‘ideal’ eddy viscosity for homogeneous
decaying turbulence computed by Chollet [81] via the test field model and eddy damped quasi-normal Mar-
kovian approximation. This method of comparison has been employed by Hickel et al. [20] to optimise incom-
pressible implicit LES.

Following Garnier et al. [23] the amplification of the fourier modes due to discretisation errors can be com-
puted as the ratio of the Fourier transform of the finite volume fluxes over the spectral fluxes,
A ¼
P

k�1=2<jkj<kþ1=2FFTjðoE=oxþ oF=oy þ oG=ozÞj2P
k�1=2<jkj<kþ1=2jik1FFTðEÞ þ ik2 FFTðFÞ þ ik3FFTðGÞj2

; ð54Þ
which can be rewritten using Eq. (1) as,
A ¼
P

k�1=2<jkj<kþ1=2FFTj � oU=otj2P
k�1=2<jkj<kþ1=2jik1FFTðEÞ þ ik2FFTðFÞ þ ik3FFTðGÞj2

: ð55Þ
The numerator is computed as a central difference approximation for the derivative of the conserved variables
with respect to time, i.e. (Un+1 � Un�1)/Dt, and the spectral divergence as a function of the conserved variables
at time level n. Fig. 14 shows the ratio of the fluxes computed for the M3, M5 and W9 schemes for 643 to 2563

for the continuity and qu momentum equation. The results for the energy equation are very similar to those of
the continuity equation, and the qv and qw momentum equations match the qu equation.

As shown in [23] the effective filter length is different for the continuity and momentum equations. Increas-
ing the resolution of the numerical scheme does not significantly improve the resolution of the continuity and
energy equations, and at the highest resolution there is only a 20% difference in cut-off wave number for A1

over all methods.
Table 7 details the cut-off filter length, which is defined as the highest wave number for which A > 0:9, nor-

malised by kmax. Comparing these to the results in Table 6 it can be seen that for M3 and M5 the cut-off point
for the k�5/3 range is at lower wave number than the highest effective cut-off wave number for the continuity
and energy equation (A1 and A5). However, the WENO ninth-order inertial range cut-off lies between the
effective filter length for the continuity and momentum equations. The normalised effective filter length
appears to be converging to a constant value independent of grid size, being approximately kmax/5 for M3,
kmax/3 for M5 and kmax/2 for W9. All three schemes are dissipative, the maximum amplification of a given
wave number is 6% for M3, 2.5% for M5 and 0.1% for W9 at 643, becoming negligible at higher grid resolu-
tions. This is likely to be due to the accuracy of the central difference approximation of the change in
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Fig. 14. The ratio of the fluxes computed using the FV schemes to spectral fluxes at t = 5 for the continuity equation (left) and u-
momentum equation (right).
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Table 7
Highest normalised wave number (k/kmax) at which A > 0:9

Scheme 643 1283 2563

A1 A2 A1 A2 A1 A2

M3 0.16 0.25 0.17 0.20 0.18 0.20
M5 0.19 0.31 0.19 0.31 0.22 0.33
W9 0.28 0.46 0.28 0.46 0.23 0.48
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conserved quantities over the time, hence explaining why the maximum amplification decreases as grid size
increases.

Next, the effective numerical viscosity is assessed for it’s suitability as a turbulent eddy viscosity. The
momentum equations can be written in spectral form as
o

ot
þ mk2

� �
unðk; tÞ ¼ �

i

2
P nlmðkÞ

Z
ulðp; tÞumðk� p; tÞd3p; ð56Þ
where the projection tensor is defined as,
P nlmðkÞ ¼ kmðdnl � knkl=k2Þ þ klðdnm � knkm=k2Þ: ð57Þ
The evolution equation for kinetic energy as a function of wave number is derived by multiplying Eq. (56) by
u�nðk; tÞ, where * indicates the complex conjugate, giving
o 1
2
juðk; tÞj2

ot
¼ �2mk2 1

2
juðk; tÞj2 þ T ðk; tÞ; ð58Þ

T ðk; tÞ ¼ 1

2
Im u�nðk; tÞP nlmðkÞ

Z
ulðp; tÞumðk� p; tÞd3p

� �
: ð59Þ
The spectra can be integrated in spherical shells to give the Transfer function T(k) and energy spectrum E(k) as
a function of wave vector magnitude k,
EðkÞ ¼ 4pk2 1

2
hjuðk; tÞj2i; ð60Þ

T ðkÞ ¼ 4pk2hT ðk; tÞi: ð61Þ
Eq. (58) can be rewritten as
o

ot
Eðk; tÞ ¼ �2mk2Eðk; tÞ þ T ðk; tÞ: ð62Þ
By assuming that the numerical viscosity behaves in a manner analogous to physical viscosity, an effective
numerical viscosity for inviscid simulations can be computed using
mn ¼
T ðk; tÞ � o

ot Eðk; tÞ
2k2Eðk; tÞ

; ð63Þ
computed numerically as [80]
mn ¼
T ðk; tnÞ � ðEðk; tnþ1Þ � Eðk; tn�1ÞÞ=2Dt

2k2Eðk; tnÞ
; ð64Þ
where modes are included in the computation only if the magnitude of the wave vector is smaller than a cut-off
wave number kc. It is normalised using the energy at the cutoff wave number E(kc) and kc
mþn ðkjkcÞ ¼
mnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EðkcÞ=kc

p : ð65Þ



This is compared to the theoretical result fitted by the expression of Chollet [81]
mþn ðkjkcÞ ¼ C�3=2
K ð0:441þ 15:2exp�3:03kc=kÞ: ð66Þ
The computation of the effective numerical viscosity is quite sensitive to the choice of the cut-off wave number
kc. Plotted in Fig. 15 are the effective numerical viscosities for kc = kmax/2. Also plotted are the effective
numerical viscosities where kc is the average of the filter cut-offs measured from AðkÞ.

At k/kc > 0.3 in all simulations there is a very good qualitative agreement in terms of the shape of the
numerical spectral viscosity in comparison to the theoretical curve. Both numerical and theoretical lines have
a region of approximately constant viscosity at intermediate wave numbers, and increasing viscosity as k/
kc! 1. The effective dissipation is consistent with the previous results, showing the W9 scheme as the least
dissipative, and M3 as the most dissipative. At the cut-off wave numbers chosen here the effective viscosity
of the W9 scheme is lower than the ideal spectral eddy viscosity, which implies that the scheme could benefit
from the addition of a sub-grid model. However, if a higher wave number cut-off is chosen, the effective
numerical viscosity increases above the theoretical line.

The agreement with the theoretical results of Chollet is reasonable, however, when employing the effective
cut-off from AðkÞ, the number of modes between the energy containing modes (approximately 1 < k < 5) and
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the cut-off is very low, even for ninth-order methods at 1283. This can be seen in Fig. 15, where each symbol
represents a mode. At 643 each method has less than 10 wave numbers in this range, at 1283 less than 20.

These results imply that given a high enough grid resolution it is possible to select a cut-off wave number for
each method which gives a spectral viscosity in agreement with Chollet’s theory. The key issue at present is
that the required grid resolution is prohibitively large for many practical situations of industrial interest.

At low wave numbers the effective numerical viscosity becomes negative for some wave numbers, positive
for others, and increases in magnitude. This increase in effective viscosity can also be seen in Ciardi et al. [82].
It is interesting that for some modes the effective viscosity becomes negative. This occurs for modes where the
net transfer of kinetic energy (T(k)) is negative, yet the turbulent kinetic energy at that mode increases. As all
schemes have been shown to be dissipative at all modes on average (Fig. 14), it is possible that this is due to
compressibility effects as discussed in Section 2.4. There can be an increase in kinetic energy at some points in
the flow due to a local exchange of energy from pressure to kinetic energy in the acoustic modes. When there
are statistically few modes (i.e. at low wave numbers) this local exchange could cause an increase in total tur-
bulent kinetic energy at a given wave number. This is not taken into account in Eq. (58) as this expression is
valid only for incompressible flows.
4. Conclusions

The ability of high-order finite volume Godunov-type ILES schemes to simulate isotropic, homogeneous
decaying turbulence at low Mach number has been investigated quantitatively using a number of different
parameters. The homogeneous isotropic flow field is initialised using the divergence of a vector potential to
minimise the compressible component of the kinetic energy spectrum.

It has been demonstrated that the behaviour of the large scales is captured well at resolutions greater than
323, or when using numerical methods of higher than third-order accuracy. With this constraint satisfied the
turbulent kinetic energy decay exponent lies close to the theoretical and experimental results, and is as accu-
rate as results reported for conventional large eddy simulation. The integral length scale is expected to grow as
t2/7 for the initialised energy spectrum, and this is shown to hold for all methods. Additionally, velocity incre-
ment PDFs are found to have exponential wings, but pressure PDFs are essentially Gaussain.

Examining the spectra indicate that all methods are too dissipative at high wave numbers, giving a slope
steeper than the expected k�5/3, and there is no agreement with the Kolmogorov four-fifths law. All methods
have effective filters at less than kmax/2 for the momentum equations and kmax/4 for the continuity and energy
equation, indicating that a single filter length cannot be defined for all equations. When the numerical viscosity
is assessed as a spectral eddy viscosity it is in good qualitative agreement with the theoretical solution, having a
plateau at intermediate wave numbers and a peak at the cut off. However, unless the cut-off wave number is
chosen below kmax/2 then all methods are too dissipative.

It is difficult to define a single effective Reynolds number for the simulations. Comparing the PDF’s to
experimental results gives an estimated Rek � 600, however, compared to DNS it is an order of magnitude
lower. Examining the four-fifths law shows Rek � 30–100 for all methods except WENO ninth-order which
is approximately 200.

In comparing the numerical methods, the fifth and ninth-order methods have a clear advantage in that they
are capable of resolving non-Gaussian turbulent behaviour at lower resolutions than the second and third-
order methods. Of the second and third-order methods the third-order limiter M3 performs the best - giving
a velocity derivative skewness close to experimental for all resolutions greater than 323 whilst maintaining a
reasonable kinetic energy decay rate. Additionally, the third-order limiter has marginally higher kinetic energy
at the high wave numbers, and gives a better match to experimental velocity increment PDFs. Considering
computational time, however, the complexity of this limiter would make it undesirable as it is more expensive
than the fifth-order methods.

Of the very high-order methods, plots of enstrophy show that using a ninth-order scheme gives a similar
solution to the second and third-order methods at double the resolution. The two fifth-order schemes give
a solution marginally less than double. This is confirmed by calculating the effective numerical filter length,
where the WENO ninth-order method resolves double the wave numbers of the M3 method. Interestingly,
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there is only a marginal improvement in resolution of the energy and continuity equation at the higher grid
sizes. The M5 limiter gives excellent agreement with experimental results in predicting the intermittency in
the tails of the velocity increment PDFs, whereas the WENO methods drop off steeply at the tails. Examining
the kinetic energy spectra shows that the ninth-order method resolves an approximate k�5/3 to kmax/3, the
fifth-order method up to kmax/6, and lower-order methods up to kmax/10. This means that fifth and higher-
order methods at 1283 perform better than the second-order methods at 2563. The increase in accuracy via
this measure is greater than the increase in computational time.

In summary, the numerical methods ranked in order of decreasing performance with respect to accuracy for
a given computational time are WENO ninth-order, followed by MUSCL fifth-order, WENO fifth-order,
MUSCL third-order, van Leer, van Albada and Minmod. For a given simulation it is expected that an opti-
mum choice would be either WENO ninth-order or MUSCL fifth-order depending on the monotonicity con-
straints of a given problem.

Future work in this area is focussed on the simulation of Rayleigh–Taylor and Richtmyer–Meshkov insta-
bilities in mixing layers between two miscible fluids. In this case the transition from a perturbed interface to a
fully developed flow field has not been fully characterised and requires high resolution numerical methods
capable of resolving the laminar growth of a small perturbation through to a fully developed flow field. Addi-
tionally, there is ongoing work on understanding the role of the increase of entropy in the solution of the Rie-
mann problem leading to irreversible dissipation of kinetic energy.
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Appendix A. Symmetric limiters

The MUSCL (monotone upstream-centred schemes for conservation laws) method is used to determine the
cell interface variables by extrapolating the cell averaged variables. Examing Eq. (9) it is clear that if
/ðrLÞðUi � U i�1Þ ¼ /
1

rL

� �
ðUiþ1 � U iÞ; ðA:1Þ

/ðrRÞðUi � U i�1Þ ¼ /
1

rR

� �
ðU iþ1 � U iÞ; ðA:2Þ
then the resultant interpolated quantity is independent of k. This is the case for the van Albada, van Leer and
Minmod limiters which are always of second-order accuracy in the standard MUSCL format. As an example
this can be shown to be true for the van Leer limiter. Setting the differences (Ui � Ui�1) = Di�1/2 and
(Ui+1 � Ui) = Di+1/2, then the left-hand interpolated values are independent of k as
/ðrLÞðUi � U i�1Þ ¼
2rL

1þ rL
ðUi � U i�1Þ;¼

2Diþ1=2Di�1=2

Di�1=2ð1þ Diþ1=2=Di�1=2Þ
;¼ 2Diþ1=2Di�1=2

Di�1=2 þ Diþ1=2

; ðA:3Þ
also,
/
1

rL

� �
ðUiþ1 � UiÞ ¼

2=rL

1þ 1=rL
ðUiþ1 � UiÞ;¼

2Di�1=2Diþ1=2

Diþ1=2ð1þ Di�1=2=Diþ1=2Þ
;¼ 2Diþ1=2Di�1=2

Di�1=2 þ Diþ1=2

: ðA:4Þ
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thus demonstrating that this limiter satisfies the criteria in Eq. (A.2) meaning that it is at most second-order
accurate. Equivalent results can be shown for the Minmod, van Albada and other second-order limiters.
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